April 2017 Archives

Multiple Multiply Normal Functions

Last time we took a look at how we could define multivariate normally distributed random variables with linear functions of multiple independent standard univariate normal random variables.
Specifically, given a Z whose elements are independent standard univariate normal random variables, a constant vector μ and a constant matrix L

  Z' = L × Z + μ

has linearly dependent normally distributed elements, a mean vector of μ and a covariance matrix of

  Σ' = L × LT

where LT is the transpose of L in which the rows and columns are switched.
We got as far as deducing the characteristic function and the probability density function of the multivariate normal distribution, leaving its cumulative distribution function and its complement aside until we'd implemented both them and the random variable itself, which we shall do in this post.

Full text...

submit to reddit