December 2017 Archives

Finally On A Calculus Of Differences

My fellow students and I have spent much of our spare time this past year investigating the similarities between the calculus of functions and that of sequences, which we have defined for a sequence sn with the differential operator

  Δ sn = sn - sn-1

and the integral operator
  Δ-1 sn = Σ si
  i = 1
where Σ is the summation sign, adopting the convention that terms with non-positive indices equate to zero.

We have thus far discovered how to differentiate and integrate monomial sequences, found product and quotient rules for differentiation, a rule of integration by parts and figured solutions to some familiar-looking differential equations, all of which bear a striking resemblance to their counterparts for functions. To conclude our investigation, we decided to try to find an analogue of Taylor's theorem for sequences.

Full text...

submit to reddit  
This site requires HTML5, CSS 2.1 and JavaScript 5 and has been tested with

Chrome Chrome 26+
Firefox Firefox 20+
Internet Explorer Internet Explorer 9+