March 2018 Archives

On Natural Analogarithms

Last year my fellow students and I spent a goodly portion of our free time considering the similarities of the relationships between sequences and series and those between derivatives and integrals. During the course of our investigations we deduced a sequence form of the exponential function ex, which stands alone in satisfying the equations

    D f = f
  f(0) = 1

where D is the differential operator, producing the derivative of the function to which it is applied.
This set us to wondering whether or not we might endeavour to find a discrete analogue of its inverse, the natural logarithm ln x, albeit in the sense of being expressed in terms of integers rather than being defined by equations involving sequences and series.

Full text...

submit to reddit  
This site requires HTML5, CSS 2.1 and JavaScript 5 and has been tested with

Chrome Chrome 26+
Firefox Firefox 20+
Internet Explorer Internet Explorer 9+