October 2017 Archives

Do The Evolution

In the last few posts we have taken a look at genetic algorithms, which use simple models of biological evolution to search for global maxima of functions, being those points at which they return their greatest possible values.
These models typically represent the arguments of the function as genes within the binary chromosomes of individuals whose fitnesses are the values of the function for those arguments, exchange genetic information between them with a crossover operator, make small random changes to them with a mutation operator and, most importantly, favour the fitter individuals in the population for reproduction into the next generation with a selection operator.
We used a theoretical analysis of a simple genetic algorithm to suggest improved versions of the crossover operator, as well as proposing more robust schemes for selection and the genetic encoding of the parameters.
In this post we shall use some of them to implement a genetic algorithm for the ak library.

Full text...