# November 2019 Archives

## FAO The Householder

Some years ago we saw how we could use the Jacobi algorithm to find the eigensystem of a real valued symmetric matrix M, which is defined as the set of pairs of non-zero vectors vi and scalars λi that satisfy

M × vi = λi × vi

known as the eigenvectors and the eigenvalues respectively, with the vectors typically restricted to those of unit length in which case we can define its spectral decomposition as the product

M = V × Λ × VT

where the columns of V are the unit eigenvectors, Λ is a diagonal matrix whose ith diagonal element is the eigenvalue associated with the ith column of V and the T superscript denotes the transpose, in which the rows and columns of the matrix are swapped.
You may recall that this is a particularly convenient representation of the matrix since we can use it to generalise any scalar function to it with

f(M) = V × f(Λ) × VT

where f(Λ) is the diagonal matrix whose ith diagonal element is the result of applying f to the ith diagonal element of Λ.
You may also recall that I suggested that there's a more efficient way to find eigensystems and I think that it's high time that we took a look at it.

Full text...

### Gallimaufry

 AKCalc ECMA Endarkenment Turning Sixteen

This site requires HTML5, CSS 2.1 and JavaScript 5 and has been tested with

 Chrome 26+ Firefox 20+ Internet Explorer 9+