Lately we have been looking at Bernoulli processes which are sequences of independent experiments, known as Bernoulli trials, whose successes or failures are given by observations of a Bernoulli distributed random variable. Last time we saw that the number of failures before the first success was governed by the geometric distribution which is the discrete analogue of the exponential distribution and, like it, is a memoryless waiting time distribution in the sense that the distribution for the number of failures before the next success is identical no matter how many failures have already occurred whilst we've been waiting.

This time we shall take a look at the distribution of the number of failures before a given number of successes, which is a discrete version of the gamma distribution which defines the probabilities of how long we must wait for multiple exponentially distributed events to occur.

This time we shall take a look at the distribution of the number of failures before a given number of successes, which is a discrete version of the gamma distribution which defines the probabilities of how long we must wait for multiple exponentially distributed events to occur.

Full text...