Last time we saw how we can create new random variables from sets of random variables with given probabilities of observation. To make an observation of such a random variable we randomly select one of its components, according to their probabilities, and make an observation of it. Furthermore, their associated probability density functions, or PDFs, cumulative distribution functions, or CDFs, and characteristic functions, or CFs, are simply sums of the component functions weighted by their probabilities of observation.

Now there is nothing about such distributions, known as mixture distributions, that requires that the components are univariate. Given that copulas are simply multivariate distributions with standard uniformly distributed marginals, being the distributions of each element considered independently of the others, we can use the same technique to create new copulas too.

Now there is nothing about such distributions, known as mixture distributions, that requires that the components are univariate. Given that copulas are simply multivariate distributions with standard uniformly distributed marginals, being the distributions of each element considered independently of the others, we can use the same technique to create new copulas too.

Full text...